Tomasz Nowakowski, PhD

Associate Professor
Anatomy
Psychiatry
Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research
Research Overview: 

Dr. Nowakowski received his Ph.D. from the University of Edinburgh (UK) in 2012, where he developed his passion for understanding molecular mechanisms of brain development. Subsequently, he pursued postdoctoral training at the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at UCSF. In 2017, where he used single cell RNA sequencing to study the heterogeneity of cellular populations in the developing brain and discovered the biomarkers of outer radial glia.

He synthesized the current understanding of brain development and cortical expansion in the Supragranular Cortex Expansion Hypothesis, which extends the classic view of cortical development embodied in the Radial Unit Hypothesis to account for the massive expansion of the cortical OSVZ progenitor population, the protracted neurogenesis period in humans and primates, the loss of pial surface-contacting radial glia fibers mid-way through cortical neurogenesis, and the disproportionate expansion of supragranular cortical layers within primates. This updated model has important implication for neuronal migration, area patterning, and cortical folding.

Dr. Nowakowski established his own research group in 2017. His group seeks to understand how the human genome, a fundamental unit in biology, reproducibly generates the neuronal cell types of the brain that support its complex cognitive functions. In particular, Dr. Nowakowski is fascinated by inherited developmental mechanisms that recapitulate key morphological features of the body plan, while allowing sufficient flexibility to achieve the phenotypic variation we observe in nature. 

Recently developed technologies of single-cell sequencing, genome engineering, and in vitro modeling of tissue development have transformed our ability study the complex universe of cellular processes with unprecedented precision. Dr. Nowakowski’s independent research group seeks to utilize these technologies to uncover genetic control mechanisms underlying neurodevelopmental events and tissue organization in the cerebral cortex. These approaches may highlight cellular patterns of selective vulnerability in neurodevelopmental and neuropsychiatric disorders, including Autism Spectrum Disorders and Schizophrenia.

Primary Thematic Area: 
Neurobiology
Secondary Thematic Area: 
Developmental & Stem Cell Biology
Research Summary: 
Developmental origins of cellular diversity in the nervous system. Molecular and cellular mechanisms of cortical development.

Websites

Publications: 

Multimodal evaluation of network activity and optogenetic interventions in human hippocampal slices.

Nature neuroscience

Andrews JP, Geng J, Voitiuk K, Elliott MAT, Shin D, Robbins A, Spaeth A, Wang A, Li L, Solis D, Keefe MG, Sevetson JL, Rivera de Jesús JA, Donohue KC, Larson HH, Ehrlich D, Auguste KI, Salama S, Sohal V, Sharf T, Haussler D, Cadwell CR, Schaffer DV, Chang EF, Teodorescu M, Nowakowski TJ

Group 2 innate lymphoid cells promote inhibitory synapse development and social behavior.

Science (New York, N.Y.)

Barron JJ, Mroz NM, Taloma SE, Dahlgren MW, Ortiz-Carpena JF, Keefe MG, Escoubas CC, Dorman LC, Vainchtein ID, Chiaranunt P, Kotas ME, Nowakowski TJ, Bender KJ, Molofsky AB, Molofsky AV

Microglia regulate GABAergic neurogenesis in prenatal human brain through IGF1.

bioRxiv : the preprint server for biology

Yu D, Jain S, Wangzhou A, De Florencio S, Zhu B, Kim JY, Choi JJ, Paredes MF, Nowakowski TJ, Huang EJ, Piao X

Adhesion G protein-coupled receptor ADGRG1 promotes protective microglial response in Alzheimer's disease.

bioRxiv : the preprint server for biology

Zhu B, Wangzhou A, Yu D, Li T, Schmidt R, De Florencio SL, Chao L, Perez Y, Grinberg LT, Spina S, Ransohoff RM, Kriegstein AR, Seeley WW, Nowakowski T, Piao X

MAGIC matrices: freeform bioprinting materials to support complex and reproducible organoid morphogenesis.

bioRxiv : the preprint server for biology

Graham AJ, Khoo MWL, Srivastava V, Viragova S, Parekh K, Morley CD, Bird M, Lebel P, Kumar S, Klein O, Gómez-Sjöberg R, Gartner ZJ