Leor Weinberger, PhD

Director, Gladstone Center for Cell Circuitry
William and Ute Bowes Distinguished Professor
Professor
Department of Biochemistry and Biophysics
Department of Pharmaceutical Chemistry
+1 415 734-4857
Research Description: 

Weinberger and colleagues discovered the HIV latency circuit (Weinberger* et al. Cell 2005), which provided the first experimental evidence that stochastic fluctuations (‘noise’) in gene expression drive biological fate decisions. Noise-driven decisions were then found in systems ranging from bacteria to cancer. The lab's studies overturned dogma in the field by showing that HIV latency was a ‘hardwired’ virus program (Razooky et al. Cell 2015; Rouzine et al. Cell 2015) and discovered stochastic latency programs in other viruses (Chaturvedi et al. PNAS 2020). For these contributions, Weinberger received the NIH Avant-Garde award for HIV research and an NIH Merit Award.

The lab discovered noise-enhancer molecules (Dar et al. Science 2014), now used by numerous other labs—e.g., to modulate circadian rhythms (Li et al. PNAS 2020)—and discovered a cellular noise-control pathway that potentiates embryonic cell-fate transitions (Desai et al. Science 2021). These studies demonstrated that transcriptional noise can be a ‘feature not a bug’ of cellular systems and play a functional, physiological role.

On the therapeutic front, the lab conceptualized and forwarded Therapeutic Interfering Particles (TIPs) (Weinberger et al. J Virol. 2003)—a first-in-class antiviral countermeasure that is single-dose and escape-resistant (see TED talk, below). The lab's initial work led to the DARPA INTERCEPT program (a $40M initiative that funded dozens of virology labs worldwide from 2015–20). In 2020, the lab discovered TIPs for SARS-CoV-2 (Chaturvedi et al. Cell 2021)—the first TIP reported for any virus—and provided long-sought evidence for the therapeutic effect of the TIP mechanism of action. Following FDA reviews, the DoD and NIH funded TIP clinical trials for HIV and SARS-CoV-2.

Primary Thematic Area: 
Virology & Microbial Pathogenesis
Secondary Thematic Area: 
Cancer Biology & Cell Signaling
Research Summary: 
Regulatory Circuitry of Viruses and Engineering Novel Therapeutics
Mentorship Development: 

2022 Gladstone Outstanding Mentoring Award

Websites

Publications: 

Single-cell RNA sequencing algorithms underestimate changes in transcriptional noise compared to single-molecule RNA imaging.

Cell reports methods

Khetan N, Zuckerman B, Calia GP, Chen X, Garcia Arceo X, Weinberger LS

Quantitative comparison of single-cell RNA sequencing versus single-molecule RNA imaging for quantifying transcriptional noise.

bioRxiv : the preprint server for biology

Khetan N, Zuckerman B, Calia GP, Chen X, Arceo XG, Weinberger LS

Engineered deletions of HIV replicate conditionally to reduce disease in nonhuman primates.

Science (New York, N.Y.)

Pitchai FNN, Tanner EJ, Khetan N, Vasen G, Levrel C, Kumar AJ, Pandey S, Ordonez T, Barnette P, Spencer D, Jung SY, Glazier J, Thompson C, Harvey-Vera A, Son HI, Son HI, Strathdee SA, Holguin L, Urak R, Burnett J, Burgess W, Busman-Sahay K, Estes JD, Hessell A, Fennessey CM, Keele BF, Haigwood NL, Weinberger LS

Evidence for Behavioral Autorepression in Covid-19 Epidemiological Dynamics.

medRxiv : the preprint server for health sciences

Lewis DD, Pablo M, Chen X, Simpson ML, Weinberger L