Julie Sneddon, PhD

Asst Professor
Diabetes Center
+1 415 502-3380
Research Overview: 

The primary focus of our laboratory is pancreatic development and Type I Diabetes, and we employ the tools of stem cell biology, developmental biology, genomics, and tissue engineering.

One key goal of regenerative biology is the generation of functional cells to replace those missing or lost in disease. These cells of defined function, however, such as insulin-producing pancreatic beta cells, exist in animals only as part of a larger organ composed of a complex and incompletely defined mixture of cells. The interactions among the cells in this mixture are critical for the function of the individual cell types. For example, beta cells isolated from the pancreas and transferred to culture rapidly lose their ability to release insulin in response to glucose. Furthermore, widespread ablation of non-epithelial cells in the pancreas significantly compromises beta cell production and function. Thus far, however, the identities and specific functions of these non-epithelial cell types remain largely unknown.

In our laboratory, we aim to understand the underlying biology of the cellular microenvironment, including the cellular diversity and lineage relationships of the non-epithelial compartment of the pancreas in the context of organogenesis, adult organ function, and disease. A deeper understanding of the identity and biology of non-epithelial cell types within the pancreas and other organs will enable a more directed and efficient attempt at replacing lost cell and organ function via regenerative medicine.

Primary Thematic Area: 
Developmental & Stem Cell Biology
Secondary Thematic Area: 
Tissue / Organ Biology & Endocrinology
Research Summary: 
Pancreas development, disease, and regeneration
Mentorship Development: 

12/19/19    ACRA: Setting Training Expectations for Trainees on the Academic Career Track (1.5 hours)
3/3/20    Promoting Student Mental Health:A Presentation and Discussion (Staff and Faculty)
3/3/20    Promoting Student Mental Health: Faculty Workshop (Faculty only)
6/10/20    Tools and Tips for Virtual Learning
11/10/20    Optimizing the Efficiency of Your Lab
5/25/21  Sharpening your Mentoring Skills (SyMS) 



Doxycycline Significantly Enhances Induction of iPSCs to Endoderm by Enhancing survival via AKT Phosphorylation.

Hepatology (Baltimore, Md.)

Peaslee C, Esteva-Font C, Su T, Munoz-Howell A, Duwaerts C, Liu Z, Rao S, Liu K, Medina M, Sneddon JB, Maher JJ, Mattis AN

Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla.

Nature communications

Bautista JL, Cramer NT, Miller CN, Chavez J, Berrios DI, Byrnes LE, Germino J, Ntranos V, Sneddon JB, Burt TD, Gardner JM, Ye CJ, Anderson MS, Parent AV

A Hierarchy of Proliferative and Migratory Keratinocytes Maintains the Tympanic Membrane.

Cell stem cell

Frumm SM, Yu SK, Chang J, Artichoker JA, Scaria SM, Lee KP, Byrnes LE, Sneddon JB, Tward AD

A single-cell atlas and lineage analysis of the adult Drosophila ovary.

Nature communications

Rust K, Byrnes LE, Yu KS, Park JS, Sneddon JB, Tward AD, Nystul TG