Adam Ferguson, MS, PhD

Professor
Department of Neurological Surgery
Brain and Spinal Injury Center (BASIC)
+1 415 476-5326
Research Overview: 

Background: Our research focuses on mechanisms of recovery after neurological trauma. Injuries to the brain and spinal cord invoke numerous, interacting biological processes that work in concert to determine recovery success. Some of these biological processes have contradictory effects at different phases of recovery. For example, mechanisms of synaptic regulation can contribute to cell death in the early phases of recovery but may promote plasticity and restoration of function at later stages.  Understanding the mechanisms of recovery in the complex microenvironment of the injured central nervous system (CNS) requires large-scale integration of biological information and functional outcomes (i.e., Bioinformatics). Our work uses a combination of laboratory studies and statistical modeling approaches to provide an information-rich picture of the syndrome produced by trauma in translational in vivo models.  The long term goal of this research is to provide system-level therapeutic targets for enhancing recovery of function after brain and spinal injury.

Overarching goal: Understand and harness CNS plasticity to promote recovery of function after brain and spinal cord injury through bench-science and translational computational approaches.
 

Ongoing Research:

Computational Syndromic Discovery: Development of aggregate databases of basic spinal cord injury and traumatic brain injury research data from multiple research centers to enable sophisticated knowledge-discovery, data-sharing, and multivariate quantification of the complete constellation of changes produced by neurotrauma.

Bench science: Inflammatory modulation of glutamate-receptor metaplasticity and its role in spinal cord learning and recovery of function after neurotrauma. Techniques: biochemistry (quantitative western, qRT-PCR, ELISA), histology (immunohistochemistry, in situ hybridization), quantitative image analysis (robotic microscopy, confocal, deconvolution, image math) and behavioral analysis (locomotor scaling, fine-motor control, learning and memory).

Primary Thematic Area: 
Neurobiology
Secondary Thematic Area: 
Immunology
Research Summary: 
CNS Plasticity, Bioinformatics, and Recovery from Injury

Websites

Publications: 

Prior traumatic brain injury is a risk factor for in-hospital mortality in moderate to severe traumatic brain injury: a TRACK-TBI cohort study.

Trauma surgery & acute care open

Yue JK, Etemad LL, Elguindy MM, van Essen TA, Belton PJ, Nelson LD, McCrea MA, Vreeburg RJG, Gotthardt CJ, Tracey JX, Coskun BC, Krishnan N, Halabi C, Eagle SR, Korley FK, Robertson CS, Duhaime AC, Satris GG, Tarapore PE, Huang MC, Madhok DY, Giacino JT, Mukherjee P, Yuh EL, Valadka AB, Puccio AM, Okonkwo DO, Sun X, Jain S, Manley GT, DiGiorgio AM, TRACK-TBI Investigators, Badjatia N, Barber J, Bodien YG, Fabian B, Ferguson AR, Foreman B, Gardner RC, Gopinath S, Grandhi R, Russell Huie J, Dirk Keene C, Lingsma HF, MacDonald CL, Markowitz AJ, Merchant R, Ngwenya LB, Rodgers RB, Schneider ALC, Schnyer DM, Taylor SR, Temkin NR, Torres-Espin A, Vassar MJ, Wang KKW, Wong JC, Zafonte RD

Effect-Size Discrepancies in Literature Versus Raw Datasets from Experimental Spinal Cord Injury Studies: A CLIMBER Meta-Analysis.

Neurotrauma reports

Iorio EG, Khanteymoori A, Fond KA, Keller AV, Davis LM, Schwab JM, Ferguson AR, Torres-Espin A, Watzlawick R

Evaluating and Updating the IMPACT model to predict outcomes in two contemporary North American TBI cohorts.

Journal of neurotrauma

Takegami N, Torres-Espín A, Imagawa Y, Watanabe I, Rowell S, Schreiber M, Ferguson AR, Hinson HE

Predicting Progression of Intracranial Hemorrhage in the Prehospital TXA for TBI Trial.

Journal of neurotrauma

Hinson HE, Radabaugh HL, Li N, Fukuda T, Pollock J, Schreiber M, Rowell S, Ferguson AR