Max Krummel, PhD

Professor
Department of Pathology
+1 415 514-3130
Research Overview: 

Our work focusses on understanding patterns of immune cell-cell interactions and how these generate “the immune system”. Our studies of the immune synapse have shown how T cells regulate their motility, how they signal through synapses while moving, how they communicate with each other during arrest, and how they ‘search’ a new tissue. These are all fundamental findings and provide a lens through which we understand T cell function.

Over the past four years, we have developed novel methods and computational platforms to understand immunological processes in space and in time within normal and diseased organs. We were the first to live-image events in progressive tumors in which incoming tumor-specific T cells are captured by a population of myeloid cells. I am tremendously excited that we have begun to develop a pipeline of next-generation protein immuno-therapeutics using imaging to ‘guide’ this development.

Concurrently, we co-developed a  imaging technologies that allow, for the first time, observation of the immune system in the homeostatic, infected/injured, allergic or metastatic lung. As with primary tumors, this latter focus has allowed us to dismiss many hypothetical immune scenarios and intensely study those that define the biology in situ. 

These studies define how the immune system is organizing over space and time and guides novel therapeutic solutions.

Primary Thematic Area: 
Immunology
Secondary Thematic Area: 
Cancer Biology & Cell Signaling
Research Summary: 
The Immune Response in 4 Dimensions

Websites

Publications: 

Critical role of CD206+ macrophages in organizing anti-tumor immunity.

bioRxiv : the preprint server for biology

Ray A, Hu KH, Kersten K, Kuhn NF, Samad B, Combes AJ, Krummel MF

Multimodal identification of rare potent effector CD8 T cells in solid tumors.

bioRxiv : the preprint server for biology

Ray A, Bassette M, Hu KH, Pass LF, Samad B, Combes A, Johri V, Davidson B, Hernandez G, Zaleta-Linares I, Krummel MF

Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data.

Frontiers in immunology

Patel RK, Jaszczak RG, Im K, Carey ND, Courau T, Bunis DG, Samad B, Avanesyan L, Chew NW, Stenske S, Jespersen JM, Publicover J, Edwards AW, Naser M, Rao AA, Lupin-Jimenez L, Krummel MF, Cooper S, Baron JL, Combes AJ, Fragiadakis GK

A myeloid program associated with COVID-19 severity is decreased by therapeutic blockade of IL-6 signaling.

iScience

Hackney JA, Shivram H, Vander Heiden J, Overall C, Orozco L, Gao X, Kim E, West N, Qamra A, Chang D, Chakrabarti A, Choy DF, Combes AJ, Courau T, Fragiadakis GK, Rao AA, Ray A, Tsui J, Hu K, Kuhn NF, Krummel MF, Erle DJ, Kangelaris K, Sarma A, Lyon Z, Calfee CS, Woodruff PG, Ghale R, Mick E, Byrne A, Zha BS, Langelier C, Hendrickson CM, van der Wijst MGP, Hartoularos GC, Grant T, Bueno R, Lee DS, Greenland JR, Sun Y, Perez R, Ogorodnikov A, Ward A, Ye CJ, UCSF COMET Consortium, Ramalingam T, McBride JM, Cai F, Teterina A, Bao M, Tsai L, Rosas IO, Regev A, Kapadia SB, Bauer RN, Rosenberger CM

Metabolic programs of T cell tissue residency empower tumour immunity.

Nature

Reina-Campos M, Heeg M, Kennewick K, Mathews IT, Galletti G, Luna V, Nguyen Q, Huang H, Milner JJ, Hu KH, Vichaidit A, Santillano N, Boland BS, Chang JT, Jain M, Sharma S, Krummel MF, Chi H, Bensinger SJ, Goldrath AW