Emmanuelle Passegue, PhD

Department of Medicine: Hematology/Oncology
Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research

The goal of our research is to decipher the cellular and molecular mechanisms governing normal blood function and to unravel how they become deregulated in myeloid malignancies using the mouse as a model system. We are particularly interested in understanding how normal hematopoietic stem cells (HSCs) can become leukemia-initiating stem cells (LCSs), which promote tumor growth and disease recurrence, and to search for ways to prevent their transformation. Current projects in the laboratory study the implication of apoptosis, autophagy, immune regulation, DNA repair mechanisms and differentiation pathways in the maintenance and regulation of normal HSCs and transformed LSCs.

Stress-response mechanisms in HSC function

The hematopoietic system, like other organs in the body, must constantly contend with a broad range of cellular and environmental stresses. HSCs need to respond to such insults in a timely and appropriate manner to preserve their own functionality and genomic integrity, and ensure the continued production of blood cells. Inappropriate stress-response in HSCs can lead to deregulated blood homeostasis and to the development of blood disorders. We are interested in understanding how regulation of apoptosis, autophagy and cellular detoxification machinery normally preserve HSC function and life-long production of blood cells, and how corruption of these stress-response mechanisms contribute to HSC transformation and the development of myeloid malignancies.

Microenvironmental regulations in blood homeostasis

HSCs reside primarily in endosteal regions of the bone marrow within highly regulated niches consisting of multiple cell types, and are expose to a complex milieu of cytokine, growth factor and immune regulators. These microenvironmental cues play essential roles in regulating HSC localization, self-renewal and differentiation properties. We are interested in understanding how: 1) immune regulators control HSC activity and production of myeloid cells; and 2) how development of myeloid malignancies affects specialized stromal populations that are part of the HSC niche in the bone marrow.

Regulatory networks and LSC transformation

A large body of work has shown essential roles for two major categories of molecular networks in the regulation of self-renewal, proliferation and differentiation activity of HSCs: cell intrinsic processes such as cell cycle regulators (i.e., Bmi1, p53, p21) and the PI3-kinase signaling pathway (i.e., ATM, PTEN, mTOR, FoxO), and non-cell autonomous developmental pathways such as TGF-β, Wnt, Hedgehog and Notch. We are interested in understanding how leukemic transformation affect the activity of these molecular circuits. We are currently de-constructing the transcriptional network of HSC-transformed LSCs by exploiting both genome-wide mRNA and miRNA microarray approaches, and chromatin immunoprecipitation (ChIP) followed by high throuput sequencing (ChIP-seq) approaches.

DNA damage response and aging of the blood system

We have recently shown that HSCs are intrinsically vulnerable to mutagenesis following DNA damage. We found that their quiescent cell cycle status restrict them to the use of the error-prone nonhomologous end joining (NHEJ) repair mechanism, which render HSCs susceptible to genomic instability and transformation. This finding provides the beginning of a molecular understanding for why HSCs, despite being protected at the cellular level, are more likely than other blood cells to become transformed and initiate hematological malignancies. We are now interested in understanding how intrinsic DNA damage and the use of mutagenic DNA repair mechanisms contribute to the aging and transformation of the HSC compartment.

Pathways of myeloid differentiation and myeloid malignancies

During steady-state hematopoiesis, self-renewing HSCs give rise to non self-renewing multipotent progenitors (MPPs), which produce balanced levels of lineage-committed lymphoid and myeloid progenitors and homeostatic levels of all mature blood cells. However, this “classical” pathway of HSC differentiation fails to fully explain the massive myeloid expansion observed in myeloid disorders, which usually occurs without an accompanying increase in lymphopoiesis. We are interested in investigating alternative pathways of myeloid differentiation and to identify druggable targets for the treatment of blood disorders such as chronic inflammation and myeloid malignancies.

Primary Thematic Area: 
Developmental & Stem Cell Biology
Secondary Thematic Area: 
Cancer Biology & Cell Signaling
Research Summary: 
Molecular and cellular understanding of normal and leukemogenic hematopoiesis



The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells.

Nature immunology

Beyaz S, Kim JH, Pinello L, Xifaras ME, Hu Y, Huang J, Kerenyi MA, Das PP, Barnitz RA, Herault A, Dogum R, Haining WN, Yilmaz ÖH, Passegue E, Yuan GC, Orkin SH, Winau F

Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons.

The Journal of experimental medicine

Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M, Passegué E

Linking HSCs to their youth.

Nature cell biology

Pietras EM, Passegué E